gototopgototop

УДК 54

Мини-мониторинг некоторых физико-химических показателей моторного масла

Митрофанова Валентина Ивановна – кандидат химических наук, доцент Амурского государственного университета.

Аннотация: В статье представлено исследование автомобильного моторного масла разных производителей в виде мини-мониторинга по физико-химическим показателям для подтверждения их качества и выявления фальсификатов или подделок.

Ключевые слова: смазочные материалы, сложные смеси, присадки, вязкость, плотность, температура вспышки, температура застывания, вода.

Моторные масла (ММ) – это смазочные материалы (СМ) и, прежде всего, это достаточно сложные смеси, состоящие из базового масла и различных добавочных компонентов, в частности, присадок. Термин «базовые» указывает на их ведущее значение в свойствах именно ММ, в отличии от других СМ. По базовым маслам (по их вязкостным характеристикам, а также ряду преобладающих функциональных свойств) подразделяют на минеральные, полусинтетические и синтетические масла. Минеральные масла получают путем переработки нефти. «Различают дистиллятные (основа зимних и всесезонных масел) и остаточные (основа летних масел) фракции минерального масла. Первые получают при вакуумном разделении мазута на фракции, вторые – это остатки перегонки. На одном из этапов производства в масляную основу добавляют различные присадки и добавки, улучшающие физико-химические и механические свойства ММ». [8, с. 1]. Базовые масла с заданным уровнем вязкости получают при смешивания дистиллятных и остаточных основ в определенных соотношениях. В свою очередь базовые масла международная номенклатура подразделяет на шесть классов, различающихся «содержанием насыщенных углеводородов и серы, а также индексом вязкости:

  • Базовое, полученное путем очистки и депарафинизации нефти;
  • Базовое, с высокой степенью очистки путем гидрообработки (минеральное улучшенной очистки);
  • Базовое, полученное методом гидрокрекинга, что обеспечивает индекс вязкости от 80 до 120;
  • Базовое, полученное методом гидрокрекинга с индексом вязкости выше 120;
  • Базовое, полученное из полиальфаолефинов (синтетические масла);
  • Базовое, не вошедшее в вышеуказанные категории (Эфиры, гликоли и т.д.)». [4]

На данном этапе времени минеральные ММ применяют все реже, так как по ряду физико-химических характеристик они стали уступать синтетическим и полусинтетическим ММ. По терминологии понятно, что синтетические масла получают чисто химическим путем – диэфирные, полиалкиленгликолевые, фторуглеродные, силиконовые [8] и другие, а полусинтетические смазочные материалы (в том числе ММ) получают из синтетической основы с добавлением минеральной составляющей, или получают путем гидрокрекинга. «Рецептура» производимых и разрабатываемых новых образцов ММ это трудоемкий поиск и труд, требующий больших знаний и опыта работы в этой области.

Так как функциональное назначение ММ предотвращать проблемные процессы при работе ДВС

Добавляемые присадки к базовым маслам играют немаловажную роль. Их назначение самое разнообразное: функциональные – это противоизносные и антиокислительные присадки и пр., вязкостные присадки, как правило, отвечают за стабильность масляных пленок и вязкость, моющие присадки работают как очистители деталей двигателя и т.д. Таким образом, в сочетании с отличной базовой основой и подобранными присадками, ММ будет обладать уникальными свойствами и физико-химическими характеристиками, обеспечивающими экономичную, бесперебойную и отлаженную работу всех деталей двигателя, и в целом автомобиля.

В современном «автомобильном мире» к ММ предъявляются достаточно жесткие требования, так как совершенствуются в техническом плане автомобили, возрастают и требования как к функциональным, так и прочим характеристикам ММ.

Данное исследование есть продолжение мини-мониторинга ряда физико-химических характеристик некоторых образцов ММ в связи с эксплуатацией автомобилей в довольно сложных климатических условиях резко-континентального климата Дальнего востока. [9, 10]. Кроме того, имеет место появление подделок некоторых марок ММ на потребительском рынке.

Для сравнительного исследования были отобраны всесезонные синтетические и полусинтетические образцы ММ, некоторые из которых исследовались ранее в 2018-2019 г.:

1 образец – Лукойл Люкс 5W-40 SN/CF (Россия, компания «Лукойл»);

2 образец – Mobil Super 3000 Х1 5W-40 (марка принадлежит объединённой американской компании ExxonMobil, производят масло в разных странах, в том числе во Франции, Швеции и Финляндии, в том числе для российского потребителя);

3 образец – Castrol EDGE 5W-40 (марка принадлежит компании Castrol Ltd, Великобритания, производство в разных странах);

4 образец – ESSO Ultron 5W-40 (марка принадлежит американской корпорации EXXON (ExxonMobil), производство в разных странах). [8, 10].

Так как образцы отбирались по принципу произвольной выборки и простого опроса автомобилистов, а также по мониторингу отзывов в интернете для полноты и объективности эксперимента были также взяты новые образцы:

5 образец – SHELL Helix Ultra 5W-40 (Британо-Нидерландская нефтегазовая компания, для российских потребителей их выпускают в Торжке, где расположен крупнейший завод Royal Dutch Shell);

6 образец – TNK Magnum Super 5W-40 (масла ТНК принадлежат одновременно таким гигантам, как «British Petroleum», «Роснефть» и собственно «Тюменской нефтяной компании»).

Надо отметить, что синтетические масла и в определенной степени и полусинтетические, обладают исключительно удачными вязкостно-температур-ными характеристиками. Прежде всего это «более низкая, чем у минеральных, температура застывания (-500С, -600C) и очень высокий индекс вязкости, то есть относительно небольшое изменение вязкости в зависимости от изменений температуры, что очень облегчает запуск двигателя в морозную погоду. Также они имеют более высокую вязкость при рабочих температурах свыше 100°C – благодаря этому масляная пленка, разделяющая поверхности трения, не разрушается в экстремальных тепловых режимах. Кроме того, к достоинствам синтетических масел можно отнести высокую термоокислительную стабильность, то есть малую склонность к образованию нагаров и лаков, а также небольшие по сравнению с минеральными маслами испаряемость и расход на угар». [8]

Как и ранее [9, 10] физико-химические испытания были проведены согласно нормативных требований ГОСТ 10541-78 [2] и по соответствующим методикам. Из физико-химических показателей важнейшими являются реологические и температурные, так как именно эти свойства обеспечивают защиту мотора от перегрева, препятствуют образованию коррозии, предотвращают быстрый износ механизмов, а также выводят нагар, сажу, продукты сгорания топлива за пределы двигательной системы и соответственно способствуют увеличению ресурсу силового агрегата.

В рамках исследования были определены плотность, динамическая и кинематическая вязкость, индекс вязкости, значение температуры вспышки в открытом тигле, температура застывания, щелочное число и содержание механических примесей.

«Вязкость является одной из важнейших характеристик смазочных масел, определяющих силу сопротивления масляной пленки разрыву. Чем прочнее масляная пленка на поверхности трения, тем лучше уплотнение колец в цилиндрах, меньше расход масла на угар». [8] Определяется она с помощью индекса вязкости. Индекс вязкости – это величина, показывающая степень тягучести масляной жидкости при температурных изменениях. Высокие значения индекса вязкости характеризуют высокую адаптивную способность ММ под температурные перепады, что в условиях резко-континентального климата ДВ является жизненно необходимым: в условиях отрицательных температур моторная жидкость с низким индексом затруднит пуск силового агрегата, а при высокотемпературных режимах не сможет предотвратить большую силу трения (определяется по ГОСТ 25371).

Динамическая вязкость выражается силой сопротивления двух слоев смазочного материала площадью 1 см2, отстоящих друг от друга на расстоянии 1 см и перемещающихся один относительно другого со скоростью 1 см/с (определяется по ГОСТ 52257-2004).

Кинематическая вязкость определяется как отношение динамической вязкости к плотности жидкости (ГОСТ 33768-2015 и ГОСТ 350085).

Такой показатель как температура застывания характеризует состояние ММ при низкой температуре, когда масло теряет подвижность (определяется по ГОСТ 20287-91). В определенной степени температура застывания отвечает той предельной температуре, при которой возможен запуск охлажденного двигателя. Также по температуре застывания можно классифицировать масла на летние (от минус 150С и более) и зимние (от минус 200С и ниже).

Показателем коррозионного износа деталей является щелочное число – это качественный показатель: чем больше эксплуатировалось ММ, тем ниже показатель щелочности (ГОСТ 11362-96).

К вязкостно-температурным показателям относится температура вспышки (определяется в открытом тигле, ГОСТ 4333-87). ММ в двигателях подвергаются действию повышенных температур и подвергаются испарению, а далее смешиваясь с воздухом, образуют взрывную смесь. Температуры вспышки и воспламенения характеризуют огнеопасность продукта, по ее значению можно судить о характере углеводородов, входящих в состав масла, а также о наличии примеси топлива в нем.

В ММ в технологической цепочке производства и подготовки к использованию по назначению могут попасть механические примеси, вызывающие износ деталей ДВС, и вода. По нормативным требованиям в ММ без присадок механических примесей быть не должно, а с присадками не более 0,015 % по массе (определяются по ГОСТ 6370-83). Вода - это «враг» присадок, так как вызывает их деструкцию, поэтому ее по нормативным требованиям быть не должно (определяется по ГОСТ 1547-84).

Полученные результаты анализа представлены в таблицах 1, 2, 3, 4.

Таблица 1. Значения плотности и индекса вязкости.

№ образца

 

ρ, г/см3 при 20 ℃

Индекс вязкости

Среднее значение

Значение по ГОСТ 10541-78

Среднее значение

Значение по ГОСТ 10541-78

1

0,864

 

 

не более 0,900

120

 

не менее 115

 

2

0,902

116

3

0,871

121

4

0,858

125

5

0,904

114

6

0,875

125

Таблица 2. Значения кинематической вязкости.

№ образца

ν, /с

Среднее значение

Значение по ГОСТ 10541-78

при 40 0С

при 100 0С

≈ при 40 0С

при 100 0С

1

2

3

4

5

1

90,2

13,8

90,3

не менее 12

2

96,2

12,4

 

95,7

3

95,6

14,1

4

95,0

12,9

5

95,4

12,9

6

95,5

13,5

Таблица 3. Значения температуры вспышки, температуры застывания.

№ образца

 

Значение исследуемых параметров

Нормируемый показатель по ГОСТ 10541-78

Значение температуры вспышки, t 0С

не ниже

210

1

218

2

211

3

218

4

212

5

210

6

224

 

Значение температуры застывания, t 0С

не выше

˗ 30

1

˗ 25

2

˗ 15

3

˗ 18

4

˗ 16

5

˗ 15

6

˗ 22

Таблица 4. Значения щелочного числа, содержание механических примесей и воды.

№ образца

 

Значение исследуемых параметров

Нормируемый показатель по ГОСТ 10541-78

Щелочное число, мг КОН на 1 г

не менее

7,5

1

7,9

2

8,2

3

7,6

4

9,2

5

7,5

6

8,8

 

Содержание механических примесей, %

не более

0,015

1

0,003

2

0,056

3

0,011

4

0,014

5

0,035

1

2

3

6

0,005

 
 

Содержание воды, не более

следы

1

Отсутствует

2

Установлено наличие

3

Отсутствует

4

Отсутствует

5

Установлено наличие

6

Отсутствует

По полученным физико-химическим показателям шести образцов ММ разных марок и производителей можно сделать следующие выводы:

  1. В целом все образцы по всем испытаниям показали результаты, практически соответствующие требованиям нормативных документов, подтверждая свой качественный потенциал с более ранними исследованиями.
  2. Образцы ММ 2 и 5 (Mobil Super 3000 Х1 и SHELL Helix Ultra) по содержанию механических примесей и присутствию воды не соответствуют нормативным требованиям, а также есть незначительное отклонение по плотности. Эти результаты подтверждают отзывы автомобилистов о некачественном состоянии этих ММ, а ряд экспертов подтверждают, что именно по этим маслам чаще всего встречаются подделки. Таким образом, исследуемые ММ Mobil Super 3000 Х1 и SHELL Helix Ultra не являются качественными продуктами и могут нанести определенный ущерб работе ДВС.
  3. Образец 3 (Castrol EDGE 5W-40) показал более хорошие результаты по сравнению с более ранними исследованиями. [9, 10].

Список литературы

  1. Беляев, С. В. Моторные масла и смазка двигателей: Учебное пособие / С. В. Беляев – Петрозаводск, 1993. – 70 с.
  2. ГОСТ 10541-78. Масла моторные универсальные и для автомобильных карбюраторных двигателей. Технические условия (с Изменениями N 1-11 1995). Введ. 1980-01-01. – М.: Изд-во стандартов. – 11 с.
  3. Классификация моторных масел [Электронный ресурс]. – Режим доступа:
  4. http://avtonam.ru/fluids/klassifikaciya-i-oboznachenie-motornyx-masel/. – 20.03.20.
  5. Маслов Р. Моторные масла: состав, классификации, методы испытаний, одобрения. По материалам зарубежных изданий [Электронный ресурс]. – 18.01.13. – Режим доступа: http://www.expert-oil.com/articles/motornie-masla_sostav_klassifikatcii-ispitanija_odobrenija.html – 02.02.20.
  6. Моторные масла [Электронный ресурс]: – 20.07.2017. – Режим доступа:
  7. http://k-a-t.ru/dvs_smazka/2-masla/index.shtml – 20.03.20.
  8. Основные функции моторного масла [Электронный ресурс]. – Режим доступа: http://krutimotor.ru/funktsii-i-naznachenie-motornogo-masla-v-dvigatele/#i. – 21.03.20.
  9. Состав и классификация моторного масла [Электронный ресурс]: офиц. сайт. – 2015. – Режим доступа: http://autoleek.ru/avtomobilnye-zhidkosti/masla/sostav-motornogo-masla.html – 12.02.20
  10. Физические и химические свойства масел [Электронный ресурс]: офиц. сайт – 2017. – Режим доступа: https://studref.com/333563/tehnika/fizicheskie_himicheskie_svoystva_masel – 10.02.20.
  11. Шпак Е.Д., Митрофанова В.И. Физико-химические показатели качества моторного масла. // Благовещенск, Вестник АмГУ, выпуск 85, 2019. 103-106 с.
  12. Шпак Е.Д. Исследования качественных характеристик смазочных материалов на примере моторного масла. – Материалы XXI научно-практической конференции «Молодежь XXI века: шаг в будущее». Изд. ДальГАУ, Благовещенск – 2020. – Т. 4, 105-106 с.

Интересная статья? Поделись ей с другими:

Внимание, откроется в новом окне. PDFПечатьE-mail